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Abstract

A level set method is presented to study the growth and interaction of multiple dendrites in solidification. The method
couples thermal and solute diffusion with propagation of multiple interfaces. A single signed distance function is used to
track the solid–liquid interface with the aid of markers, the value of which is the orientation angle, for identification of
different crystals. The problem of evolving multiple crystal interfaces is reduced to two tasks: (1) tracking one level set var-
iable (signed distance function) and (2) determination of the marker for a newly solidified finite element nodal point.
Tracking a single level set variable is implemented by solving the level set equation with interface velocity computed from
an extended Stefan equation using the marker information (crystal orientation). Determination of the marker for a newly
solidified finite element nodal point is implemented by using an algorithm modified from the fast marching technique. Both
of these two steps are computationally efficient and the approach is suitable for incorporating effects of multiple crystals.
Convergence and accuracy of this approach are demonstrated by using different grid spacings and comparing with results
obtained from the multi-phase level set method. A parametric study is performed to investigate the effects of solidification
speed and thermal gradient on the resulting solidification microstructure pattern. Numerical results of columnar-to-equi-
axed transition (CET) qualitatively agree with an analytical estimation and are similar to previous numerical results
obtained using a phase field method. A convergence study is performed to determine the appropriate grid spacing for
numerical simulation. At lower surface tension, CET occurs at a lower thermal gradient for a giving solidification speed.
Secondary dendrite formation is more apparent with lower surface tension. The differences and similarities between the
three-dimensional and two-dimensional growth results are analyzed. Randomness in crystal orientation and required und-
ercooling for nucleation are modeled and found to have a great effect on the microstructure pattern. The efficiency of the
present approach is finally demonstrated with an example that includes the growth of hundreds of crystals with consider-
ation of randomness effects.
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1. Introduction

The formation of complex microstructure during solidification of pure materials and alloys has been of
great interest for hundreds of years. Various numerical methods including cellular automata [1–4], front-track-
ing methods [5–8], phase field techniques [9–18] and level set methods [19–24] have been developed to study the
growth of crystals and dendrites. Among these methods, the cellular automata technique is suitable for study-
ing the interaction between multiple dendrites especially in three-dimensions (3D), because its computational
requirement (memory and time) is low in comparison to other numerical methods. Cellular automata is widely
used in many areas including biological systems and highway traffic modeling. In this technique, a collection
of ‘colored’ cells on a grid of specified shape evolves through a number of discrete time steps according to a set
of rules based on the states of neighboring cells. Cellular automata was first introduced into solidification sys-
tems in [25] with a growth kinetics model, which can reflect the growth along preferred directions (e.g. Æ100æ
crystallographic orientations) during dendrite development. The basic idea of cellular automata for solidifica-
tion is to mimic interface propagation by capturing nearby liquid cells to the solid body according to a certain
criterion. In recent advances of this method, cellular automata is coupled with finite differences (CA-FD) [2,4]
or the finite element (CA-FE) [1] by using a criterion based on numerical solution of temperature or solute
concentration from finite differences or the finite element method. Curvature effects can also be taken into
account [2]. Cellular automata for solidification is relatively easier to implement and requires less computa-
tional resources than most other numerical methods, including front-tracking, phase field method, and level
set method. However, it has some deficiencies in its accuracy due to its discrete nature. For example, it is
pointed out in [1] that cellular automata methods have a tendency to bias the results by introducing an anisot-
ropy associated with the network of cells or sites. Although corrections can be introduced [1] to circumvent
this problem, independence of the cellular automata results on the numerical grid size and mesh orientation
is rarely demonstrated. It is also pointed out in [26] that cellular automata lacks the ability to accurately take
into account the surface tension anisotropy effect, which is of great importance in dendritic growth.

Although cellular automata is very successful in predicting grain structures which account for interaction
between many dendrites, many researchers are working on other more complicated and computationally more
expensive methods since issues of accuracy are not sufficiently addressed by the cellular automata method. In
fact, obtaining a converged solution for a single crystal independent of mesh orientation itself is a nontrivial
task due to the existence of a moving interface during the solidification process [7,8,18,20–22]. During the last
two decades, significant progress has been made in the simulation of single crystal growth using phase field
methods [12,13,18]. These approaches, by considering a diffuse interface and a fixed-grid, avoid the need
for applying temperature boundary conditions on the moving interface. A review of recent progress in phase
field methods as applied to solidification processes is given in [18]. The basic idea of the phase-field method is
to employ a phase-field variable U that varies smoothly from zero to unity between the two phases over the
diffuse interface region, which has a small but numerically resolvable thickness. The phase field variable serves
to distribute the interfacial forces over the diffused freezing region. It is governed by a phase-field control
equation derived from the thermodynamics of phase transition [18]. Important physical mechanisms, such
as curvature, anisotropy and kinetics effects, are implicitly incorporated in the phase-field control equation.
This leads to many computational advantages. For example, one does not need to compute interfacial geomet-
ric quantities such as interface curvature and outward normal vector. But on the other hand, this also leads to
a drawback of the phase field methods since there are a large number of parameters involved in the solution of
the evolution equations to be determined. Some of these parameters are difficult to determine for accurate
physical crystal growth simulation of real world materials. The front-tracking method, however, can avoid
the difficulty of determining parameters, since a sharp interface model is directly solved. Recently front-track-
ing techniques have been used successfully to reproduce the complex dendritic structure in crystal growth in
undercooled melts including effects such as liquid trapping, tip-splitting, side branching and coarsening
[5,6,27]. Successful 3D front-tracking implementations including the effects of melt flow have been presented
[8]. The advantages of front-tracking methodologies lie in their ability to directly enforce the freezing interface
temperature (Gibbs–Thomson) relation and energy balance (Stefan condition). Unfortunately, many of the
current implementations of these conditions do not allow global energy conservation even though they may
satisfy the Stefan condition pointwise.
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The level set method is an alternative method to handle the sharp interface front directly and to avoid the
asymptotic analysis needed in phase field models. It has been shown to be a promising mathematical tool for
tracking the interface with low computational cost. In this method, interfacial geometric quantities such as
curvature and outward normal can be easily calculated using the level set variable /, which is simply the
signed distance to the solid/liquid interface with ‘+’ sign in the liquid phase and ‘�’ sign in the solid phase.
The method was first applied to Stefan problems in [19]. Level set calculations for dendritic growth were
reported in [20]. In these works [19,20], the heat flux at nodes near the interface is interpolated in order to
calculate the interface velocity via the Stefan condition. During this interpolation, the temperature on the
interface is fixed at the equilibrium temperature defined from the Gibbs–Thomson relation. However, like
front-tracking methods, the direct application of temperature boundary conditions on the interface and the
computation of heat fluxes from the temperature nodal values usually lead to energy conservation issues asso-
ciated with the discretization error [28]. This may result in large variation of the computed crystal shapes if
meshes of different sizes and orientations are used.

One common drawback of both diffuse interface (phase field methods) as well as the interface tracking
(front-tracking and level set methods) techniques is the significant computational effort required to perform
any large scale realistic simulation. For instance, early implementations of the phase field method necessitated
using grid spacing of the order of the interfacial thickness (the so-called sharp interface limit, see [12] for a
detailed discussion). These issues were resolved to an extent in [12], where a ‘‘thin-interface’’ limit of the phase
field equations was derived. Furthermore, developments in adaptive meshing have significantly improved the
ability of such models to efficiently and accurately simulate phase transition behavior. Nevertheless, to obtain
a fully converged solution for the growth of a single crystal using these methods still remains a non-trivial task.
This point is particularly brought into context in [13], where it took approximately 10 CPU hours on a Sun
UltraSPARC 2200 workstation to simulate the growth of a single crystal at dimensionless undercooling 0.55
by utilizing the improved phase field method [11] and adaptive meshing technique. On the other hand, since
level set and other front tracking methods explicitly track the interface, they do not suffer from this particular
problem. The major problems plaguing these explicit tracking techniques are energy conservation issues. This
arises primarily due to the direct application of Gibbs–Thomson relation on the interface. These set of prob-
lems can only be resolved by using a fine mesh. As demonstrated in [5,19,20], a typical 2D mesh size to obtain
a converged solution using the front-tracking method or level set method is of the size about 400 · 400. In
essence, both phase field and level-set methods are bottle-necked by (different) issues that make realistic multi-
ple dendrite simulation (while demonstrating convergence and mesh independence of the solution) a compu-
tationally daunting task requiring huge meshes and consequently enormous computational resources.

The importance of interaction between multiple crystals has been demonstrated in many studies
[6,19,21,26]. Ref. [6] uses a front-tracking method to study the interaction between multiple crystals with
the same initial perturbation in the seeds. Refs. [19,21] demonstrate the ability of using the level set method
to capture the growth and merging of multiple dendrites with different initial perturbations. However, in these
studies [6,19,21], nucleation is not modeled. Only recently, Ref. [26] gives the first phase field study of inter-
action between tens of crystals by fully utilizing symmetry in 2D with modeling of nucleation. Interaction
between hundreds or even thousands of randomly nucleated crystals with a convergence study has not yet
been demonstrated in the literature. In all of the above studies, convergence and mesh orientation indepen-
dence are not demonstrated. More importantly, the randomness of crystal orientation is not considered in
these studies. To efficiently track multiple interfaces with random orientations requires a significant departure
from the current numerical algorithms. The emphasis of this work is using a level set approach to address this
ability and to study the effects of randomness in crystal orientation.

In our previous work [22], we proposed a numerical scheme based on the level set method, which combines
features of both front-tracking methods and fixed domain methods. It has been demonstrated that less com-
putational resources are required to obtain a converged solution for pure material single crystal growth com-
paring with other numerical methods. Extension of this work to alloys is demonstrated in [24]. In this work,
we will demonstrate the ability of using the level set method for tracking the growth of multiple dendrites in
both 2D and 3D. We will first summarize a nucleation and growth model, followed with numerical techniques
to solve the mathematical model. At the numerical examples section, we will perform a convergence study, and
investigate the randomness effects on the growth pattern. The importance of this work is that the interaction
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between multiple dendrites can be studied numerically with demonstration of convergence, which will serve as
the foundation for multi-scale modeling of solidification processes.

2. Mathematical model

To focus on the modeling of nucleation, we take a few simplifications in our model.

(1) All material properties are assumed to be constant if not mentioned. These include density q, heat capac-
ity c, latent heat L, heat diffusion coefficient k, solute diffusion coefficient D, liquidus slope ml, and par-
tition coefficient kp.

(2) Fluid flow effects are not considered in this work.
(3) Solute diffusion in the solid phase is neglected.

2.1. Previous model

In this section, we provide a brief review of our previous model with the mentioned simplifications. For
more details of this model with consideration of convection, the interested reader can refer to [22].

The governing equations for modeling of heat transfer and solute transport during solidification are as
follows:
qc
oT ðx; tÞ

ot
¼ kr2T ðx; tÞ; x 2 X;

oClðx; tÞ
ot

¼ Dr2Clðx; tÞ; x 2 Xl;
where X is the total domain including both the liquid part Xl and the solid part Xs. The above two governing
equations for temperature T and solute concentration in liquid Cl are simple diffusion equations and introduce
a physical model that has been very well studied. However, due to the existence of the moving interface, Csl,
the boundary conditions listed below make the problem nontrivial.

Because of phase transformation, solute is rejected from the solid phase to the liquid phase leading to a
solute rejection flux at the freezing interface:
D
oCl

on
¼ �ð1� kpÞClV n; ð1Þ
where n is the normal direction of the solid–liquid interface pointing towards the liquid phase.
The temperature at the solid–liquid interface Csl, TI, equals the equilibrium temperature, T*, given by the

Gibbs–Thomson relation:
T I ¼ T � � T m þ mlC
l � �cj� �VV ; ð2Þ
where Tm is the melting temperature of the solidifying material, �c is the curvature undercooling coefficient, j
is the curvature of the interface, �V is the kinetic undercooling coefficient, and V is the interface velocity.

The velocity of the solid–liquid interface is governed by the heat flux jump through the classical Stefan
equation:
V ¼ qs � ql

qL
; ð3Þ
where qs and ql are the heat fluxes at the solid and liquid side of the interface, respectively.
We have introduced two assumptions for applying these boundary conditions indirectly.

(1) Solidification occurs in a diffused zone of width 2w that is symmetric around the zero level set. A phase
volume fraction e can be defined according to the signed distance to the interface, /, which is simply the
distance to the interface with ‘+’ sign in the liquid phase and ‘–’ sign in the solid phase:
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eðx; tÞ ¼
0; /ðx; tÞ > w;

1; /ðx; tÞ < w;

0:5� /=ð2wÞ; /ðx; tÞ 2 ½�w;w�:

8><
>:
(2) The solid–liquid interface temperature, TI, is allowed to vary from the equilibrium temperature, T*, in a
way governed by
dT I

dt
¼ �kN ðT I � T �Þ;
where kN controls the rate with which TI is designed to approach the desired equilibrium temperature T*. In
[22], for a given time step Dt, we selected kN = 1/Dt to guarantee that the interface temperature stably con-
verges to the equilibrium temperature. The selection of Dt was based on a CFL condition for the level set func-
tion calculation [22].

From the second assumption, a so called ‘extended Stefan equation’ (see Section 2.3) can be introduced
to compute the interface velocity of the diffuse interface by performing an energy balance at the diffuse
interface [22]. This interface velocity is then utilized to evolve the solid–liquid interface by solving a level
set equation. From the updated signed distance function, the first assumption can then be applied to find
the liquid volume fraction, and solve for the temperature and concentration fields using volume averaging
techniques.

2.2. Nucleation model

Nucleation is a very complicated phenomenon related with the type and amount of impurities in the mate-
rial. In this work, we assume that the number of impurities per unit volume, i.e. the density of impurities, is qn.
Suppose that the domain of interested problem has a volume of V, then there will be qnV potential nucleation
sites, since each impurity serves as a potential nucleation site. For each potential nucleation site i, we model
three random variables, location xi, required undercooling for nucleation DT n

i and orientation Ii. These ran-
dom variables are independently sampled with the sampling scheme discussed below.

(1) xi is the location of the potential nucleation site. In [26], the potential nucleation sites are distributed
uniformly with a certain spacing. The advantage of modeling uniformly spaced potential nucleation sites
is that determination of their locations is very simple. This idea is followed in our computations in Sec-
tion 4.2 in order to allow us to compare our results with those reported in [26]. A big disadvantage of
modeling uniformly spaced potential nucleation sites is that it requires a structured mesh with proper
grid spacing so that a potential nucleation site coincides with a finite element node. The nature of ran-
domness in the location of potential nucleation sites is also lost by modeling them to be uniformly
spaced. To overcome these disadvantages, we assume that xi is equally probable at each point of the
whole domain instead of deterministically at a particular mesh nodal point.In our computations with
consideration of randomness (Sections 4.2.4 and 4.3), we apply the following sampling scheme element
by element. For each element e of the initial coarse mesh, we assign a set of potential nucleation sites
with the following steps:

(a) Compute volume of element e, Ve. Since qn is the number of potential nucleation sites in a unit

volume, we will have qnVe potential nucleation sites inside element e. In general, qnVe will not
be an integer. For example, if qn = 100, Ve = 0.023, then qnVe = 2.3. We want to use a sampling
scheme such that the expected number of potential nucleation sites assigned to the element is 2.3.

(b) Let ne be the integer part of qnVe (e.g. when qnVe = 2.3, ne = 2). Sample p from the uniform dis-
tribution with range [0,1]. If p < qnVe � ne (i.e. p < 0.3 in our example), then set ne = ne + 1. This
step guarantees that the expected number of potential nucleation sites inside element e is qnVe. For
the example of qnVe = 2.3, with this step, the probability of ne = 2 is 0.7, while the probability of
ne = 3 is 0.3. So the expected number of potential nucleation sites in the element becomes
Æ ne æ = 0.7 · 2 + 0.3 · 3 = 2.3, which is the value of qnVe.
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(c) For each potential nucleation site i = 1,2, . . . ,ne, sample its location xi (uniformly distributed in
element e), required undercooling DT n

i (N(l,r2)), and orientation angle Ii (uniformly distributed
in [0, 2p]).
After an element is refined into a few ‘child’ elements, the potential nucleation sites assigned to it
are further assigned to its ‘child’ elements according to whether the location of the potential nucle-
ation site falls inside the ‘child’ element. In this way, we only need to go through all elements to
determine which potential nucleation sites become seeds for crystal growth.
(2) DT n
i is the required undercooling for the potential nucleation site i to nucleate and become a crystal seed.

Only if the undercooling at the potential nucleation site i is greater than DT n
i , site i becomes a crystal

seed. In our numerical example in Section 4.2.4, the required undercooling for nucleation DT n
i is assumed

to be at a fixed value of 8 K following [26]. In Section 4.3, we assume that DT n
i follows a normal distri-

bution with mean l and variance r2.
(3) The other random variable, Ii, is the orientation angle at potential nucleation site i. The orientation angle

is the preferred crystal growth direction. In two dimensions, the preferred crystal growth direction can be
mapped to a point on the circumference of a unit circle. Any value between 0 and 2p corresponds to a
preferred crystal growth direction. In other words, we can use one real number, I, to represent the pre-
ferred crystal growth direction. In three-dimensional growth, the preferred crystal growth direction can
be mapped to a point on a unit sphere. Two angles of spherical coordinate system (zenith angle and azi-
muth angle) are often used to represent a point on a unit sphere. So for extension in 3D, the orientation
angle I is taken as a vector with two components, one for zenith angle (angle from the positive z-axis)
and one for azimuth angle (angle from the positive x-axis). In the numerical examples in Section 4.2.4,
we only considered the randomness of orientation angle in two dimensions. Ii is sampled from a uniform
distribution from 0 to 2p. After nucleation at location of potential nucleation site i, the crystal may in
general rotate as it growths (e.g. as a result of convection). This leads to change in orientation angle for
the crystal. This movement of crystal is not considered in this work. In other words, the orientation of
the crystal, I, is assumed to be fixed at the value when it is nucleated (i.e. Ii if it is nucleated from poten-
tial nucleation site i) during growth of the crystal.

Using the above sampling technique, the potential nucleation sites do not need to be at the same location as
the finite element nodes. This gives flexibility to select grid spacing. There are ne potential nucleation sites (with
expectation qnVe) inside element e. In our implementation, we maintain a link list to contain information
about these potential nucleation sites including xi, DT n

i and Ii for each element. For determining whether
nucleation occurs at location of a potential nucleation site or not, we use data at nodes of the element to inter-
polate data at location of the potential nucleation site. After temperature Ti and concentration Ci is obtained
at location of a potential nucleation site, xi, using interpolation, we check whether T i 6 T m þ mlCi � DT n

i . If
so, a small crystal seed will be put at location xi.

2.3. Growth model

The velocity at the phase boundary of each crystal, V, is governed by the Stefan equation. Notice that for
numerical convenience and making the scheme energy conserving, we have used an interface energy balance
that is different from the Stefan equation [22],
V ¼ qs � ql

qL
þ 2cw

L
kNðT � � T IÞ: ð4Þ
The converged solution using this formula has been proved to be the same as using the Stefan equation [22].
In our previous model, we have assumed a four-fold symmetry of the crystal structure. The Gibbs–Thom-

son relation coefficient �c is modeled as
�c ¼ d0f1� 15� cos½4aðnÞ�g; ð5Þ
where d0 is the capillary length, � is a coefficient describing the surface anisotropy extent, and a(n) is the
angle from the positive x-axis to the normal direction n. With the above formulation for the Gibbs–Thomson
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relation coefficient �c, the crystal grows fastest at directions with angles 0�, 90�, 180� and 270� to the x-axis,
and slowest at directions with angles 45�, 135�, 225� and 315� to the x-axis. In this work, we want to model the
growth of multiple dendrites. Each dendrite is growing with different orientation angle I fastest at directions
with angles 0� + I, 90� + I, 180� + I and 270� + I to the x-axis and slowest at directions with angles 45� + I,
135� + I, 225� + I and 315� + I to the x-axis. So the same 4-fold symmetry of the crystal structure is used,
except with a ‘�I’ term in the cosine function, as shown below:
�c ¼ d0f1� 15� cos½4ðaðnÞ � IÞ�g: ð6Þ

Since I varies for different crystals but is the same for the same crystal, different crystals will grow with differ-
ent preferred orientations.

3. Numerical techniques

Comparing with single crystal growth, the additional difficulty of multiple crystal growth is to track multi-
ple interfaces. We have implemented two numerical methods: (1) the multi-phase level set method by solving
multiple signed distance functions, and (2) the level set method by solving a single signed distance function
with the aid of markers. Emphasis of this work is on the second method due to its high efficiency and accuracy.

3.1. Multiple signed distance functions

For simulating the growth of multiple crystals, one way is to use multi-phase level set method with a signed
distance function for each crystal. In the implementation of this method, a new level set solver is created to
handle the evolution of a crystal when a potential nucleation site nucleates. Each level set solver is assigned
with the crystal orientation I of the potential nucleation site at the time it is created. The following are the
main steps of using this method at each time level:

(1) Compute undercooling at each potential nucleation site (interpolation will be required), and create new
level set solvers to handle the newly created crystals if required undercooling is satisfied at the location of
potential nucleation site.

(2) Compute the interface velocity on the interface of each crystal with information of crystal orientation I,
and use the computed interface velocity to evolve the signed distance function of the corresponding
crystal.

(3) Perform re-initialization of all signed distance functions.
(4) Solve for temperature and concentration fields using volume averaging techniques.
(5) Return to step 2 until convergence ðkT k

n � T k�1
n k 6 10�3 � kT k

n � T n�1kÞ is achieved for this time level.
Here n is the current time level, n � 1 is the previous time level and k is the iteration level.

Details of this method are provided in [24], where it is applied to study the growth of multiple phases
instead of multiple crystals. More theoretical analysis of this multi-phase level set method can be found at
[29,30]. In this work, this multi-phase level set method is not used as the main investigation tool but as a ver-
ification tool for the other method discussed next, because the multi-phase level set method requires the expen-
sive solution of multiple level set equations. Solving multiple level set equations is only realistic for a small
number of crystals. As the number of crystals increases, the multi-phase level set method becomes increasingly
inefficient. If tens or even hundreds of crystals are present, this numerical method is impractical, since one can-
not afford or does not want to store tens or hundreds of signed distance functions and solve tens or hundreds
of level set equations.

3.2. Single signed distance function with markers

In this work, we do not model the evolution of the solid-solid phase transformation. Therefore, the solid/
solid (crystal/crystal) interfaces are of no significant importance and are assumed to be static. The type of inter-
face of great interest is the solid/liquid (crystal/liquid) interface. We can use a single signed distance function



Fig. 1. Example of using a single signed distance function with markers.
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to implicitly represent this interface. However, we also want to identify different crystals, because each crystal
grows with different preferred orientations due to the underlying crystal structure. So we introduce another
scalar (markers) to represent different crystals. The value of the markers is just the orientation of each crystal.
As demonstrated in Fig. 1, different markers (shown with different colors) are used to identify different crys-
tals. Although only one signed distance function is used, the growth of a crystal at its own preferred direction
can be captured with the aid of markers. The problem of evolving multiple crystal interfaces is reduced to
tracking one level set variable (signed distance function) and determining the marker of a newly solidified node
point. Tracking a single level set variable is implemented by solving the level set equation as before, while
determining the marker of a newly solidified node point is implemented by using an algorithm updated from
fast marching as discussed below.

The marker (orientation of the crystal, I) has physical meaning only in the solid phase. However, doing
evaluation of the interface velocity requires that I is also defined in the liquid phase, since computation of
the interface velocity is performed on both phases near the solid/liquid phase interface. In this work, we define
I in the liquid phase as the orientation of the nearest crystal. With this definition, extension of I from the solid
phase to the liquid phase can be implemented using the fast marching technique. We have a balanced heap
data structure for easy tracking of the next closest nodal point to the solid–liquid interface. One important
step of the fast marching algorithm is to extend values in an element (say A–B–C in the 2D case). Let values
on two nodes (say A and B) be known, with the value on the other node (C) being unknown. In extending the
interface velocity from nodes A and B to node C, interpolation is reasonable since one is interested in obtain-
ing a smooth velocity field over the whole domain. However, for extending the crystal orientation angle from
nodes A and B to node C, interpolation will not make much sense since node C belongs to either the same
crystal as node A or the same crystal as node B. The following formula is thus used for extension of the ori-
entation angle from nodes A and B to node C:
IC ¼
IA; if kACk 6 kBCk;
IB; if kBCk < kACk:

�
ð7Þ
Using this method, we can efficiently extend I from the solid phase to the liquid phase as demonstrated in
Fig. 2. Notice that in Fig. 2, we have only extended I from the solid phase to a part of the liquid phase with
/ < 3w, which is far enough for computing the interface velocity. A newly solidified nodal point definitely falls
in the region with / < 3w, since the CFL coefficient is selected to be less than 1. Therefore, the orientation
angle I has already been extended to the newly solidified node.

The level set method uses a field (signed distance) to represent the interface. Let us suppose a new crystal is
introduced into the solidification system by nucleation at location xi. Since the solid–liquid interface changes,
the signed distance field needs to be updated with the following operation:
/ðyÞ  minð/0ðyÞ; kxi � yk � R0Þ; ð8Þ
where /0 is the signed distance function before the potential nucleation site is nucleated at xi, R0 is the size of
the initial crystal seed at location xi and y is the location of a node (see Fig. 3 for a related schematic). Notice
that, we need to apply this operation on all nodes whenever there is a newly nucleated crystal. Fortunately, the
number of operations is strictly proportional to the number of nodes. It is also very easy to parallelize, since
no communication (except information of the newly created crystal) is required.



Fig. 2. Example of extending the orientation angle in the liquid phase. The orientation angle is extended to the liquid phase with / < 3w.
The artifacts of interpolation lead to a color different from all nearby colors at some places of the mesh. The plotting software we utilized,
Tecplot [31], automatically interpolates the orientation and plots the color corresponding to the interpolated value.
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Fig. 3. Redefinition of the level set function when nucleation occurs in the domain [0,1] · [0,1]: The initial level set field /0 = x � 0.4
represents an interface at x = 0.4 (dark line). If nucleation occurs at (0.5,0.5) with initial seed radius 0.025, we redefine the level set field to

be /1 ¼ minð/0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
� 0:025Þ. The contour value on the second figure is the value of /1 and the dark line shows the

zero level set of /1 that appropriately captures the changes on the interface introduced by nucleation at (0.5,0.5). The remaining two
figures demonstrate the /2, /3 fields when additional nucleation occurs at the locations (0.8,0.4) and (0.6,0.7).
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The following are the main steps of using this method at each time level:

(1) Compute the undercooling at each potential nucleation site (interpolation will be required). For each
newly nucleated crystal at location xi apply the following operation on each node y:
/ðyÞ  minð/0ðyÞ; kxi � yk � R0Þ:

(2) Extend the orientation angle from the solid region to part of the liquid region with / < 3w using the fast

marching algorithm.
(3) Compute the interface velocity on the solid–liquid interface with information of orientation angle I, and

use the computed interface velocity to evolve the signed distance function. Note that I plays a role in the
computation of T*, which plays a role in the computation of V using the extended Stefan equation.

(4) Perform re-initialization of the single signed distance function.
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(5) Solve for the temperature and concentration fields using volume averaging techniques.
(6) Return to step 3 until convergence is achieved for this time level.

Comparing the above method with the multi-phase level set method, multiple signed distance functions are
reduced to just one signed distance function and an orientation angle. Moreover, we do not need to solve the
multiple level set equations. So this method is much more efficient than the multi-phase level set method. How-
ever, as shown in Eq. (7), the extension of the orientation angle is not smooth at liquid nodes, which are close
to multiple crystals. Fortunately, for most extension cases of the orientation angle from values at nodes A and
B, IA = IB. In other words, IA 6¼ IB occurs only at locations close to multiple crystals. Note that the interface
velocity is only computed at nodes adjacent to zero level set (i.e. nodes of elements cut by the zero level set). At
other nodes, the interface velocity is extended using fast marching. So assuming that I is correct for the nodes
of the elements cut by the zero level set, the above approximation will not make any difference in the calcu-
lation of the interface velocity. This means that IC will make a difference in the interface velocity only when
IA 6¼ IB and C is a node adjacent to zero level set, which means that two crystals are already very close to each
other. We will demonstrate that the difference between the results obtained with this method and the results
obtained from the multi-phase level set method is actually negligible.

3.3. Other techniques to speed up computation

In this work, the finite element method is used to solve for the temperature, solute concentration and level
set function with implementation details discussed in [23,24]. Comparing with the combined finite element
method (for governing equations of temperature and solute) and finite difference method (for level set com-
putation) [22], there is flexibility in the current implementation to use adaptively refined unstructured mesh,
which is shown to be much more efficient than a uniform mesh in [24]. Since the level set variable gives infor-
mation about how far away each node or element is from the interface, a refinement criterion based on the
level set variable [24] is very convenient for generation of adaptive mesh locally refined near the solid–liquid
interface. The effect of adaptive meshing with one level of refinement near the interface can be seen in Fig. 2.
Significantly higher levels of refinement are usually used in the numerical examples discussed later. Other than
adaptive meshing, domain decomposition (implemented with the aid of graph partition package ParMetis
[32]) is also used for parallel computing to allow investigation of interaction between hundreds of crystals.
Fast marching technique [23] is utilized to perform re-initialization of the level set variable and extension
of the interface velocity. For solving the linear systems in the finite element method, we use the Krylov sub-
space method in the matrix solver package PETSc [33].

4. Numerical examples

4.1. Interaction between nine crystals

In this example, we consider the interaction between nine crystals with orientations I = 0�, 10�, 20�, 30�,
40�, 50�, 60�, 70�, 80� as shown in Fig. 4. The domain size of interest is [�1200,1200] · [�1200, 1200]. The nine
crystals are uniformly spaced with distance D. The initial shape of each crystal is circular with radius 30. A
pure material is considered for this example with all parameters including q, c, k, L normalized to 1. The tem-
perature on the interface satisfies the following Gibbs–Thomson relation: T* = � d0{1 � 15�cos[4(h � I)]}j
with d0 = 0.5 and � = 0.05. Initially, the domain is undercooled at temperature �0.55, while inside the nine
initial crystals, the initial temperature is taken as 0. The boundary of the domain is kept at temperature
�0.55. We want to study how the nine crystals interact with each other during their growth.

4.1.1. Effects of crystal spacing

In this computation, we use an adaptive mesh equivalent to a uniform mesh of grid spacing 1. Here equiv-
alent means that the smallest grid spacing in the adaptive mesh is equal to the grid spacing in the uniform
mesh. We use the term ‘equivalent’, because both meshes lead to the same numerical solution as was demon-
strated in our earlier work [24]. The CFL coefficient for adaptive time stepping is selected to be 1

3
. When the



0ο 10ο 20ο

30ο 40ο 50ο

60ο 70ο 80ο

Δ
Fig. 4. Schematic of the growth of nine crystals.
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spacing between the crystals is 800, i.e. D = 800, the interaction between the crystals is weak as shown in
Fig. 5. The closest distance between crystals is the distance between the right dendrite tip of the crystal with
I = 0� and the left dendrite tip of the crystal with I = 10�. The distance between any other two crystals is
greater than the thermal boundary layer size. Therefore, each crystal grows almost independently, except that
the thermal boundary layers of the two crystals I = 0� and I = 10� overlap at places around their closest tips.
The independence and similarity of the thermal boundary layers for the nine crystals actually demonstrate that
the computed solution is independent of mesh orientation. When the spacing between the crystals reduces to
600 or 400, the interaction between the crystals is very obvious as shown in Fig. 5. However, in all cases, we
observe that the shapes of all ‘free’ dendrite tips are very similar. Here ‘free’ means that the dendrite tip is far
away from other dendrites. More interestingly, the solution (interface position and temperature field) keeps
partial symmetry in all three cases with different crystal spacing. For example, the two crystals with I = 30�
and I = 60� are symmetrical to each other at places close to their center line y ¼ D

2
. Similarly, the two crystals

with I = 40� and I = 50� are symmetrical to each other at places close to their center line x ¼ D
2
. This partial

symmetry comes from the symmetry in the crystal orientations as shown in Fig. 4.

4.1.2. Comparison with the multi-phase level set method

In the above computation of studying crystal spacing effects, we have used only one signed distance func-
tion and nine markers to identify the interface of the nine crystals. It is more common to use multiple signed
distance functions for tracking multiple interfaces with the level set method [29,30]. Here we study the inter-
face position using both methods with grid spacing 1 and CFL coefficient 1

3
. As shown in Fig. 6, both methods

predict almost the same interface position when the dendrite tips are close to the domain boundary. This com-
putation gives us confidence on the accuracy of using only one signed distance function with markers, which is
0
-0.1
-0.2
-0.3
-0.4
-0.5

Fig. 5. Temperature field for the interaction between nine crystals with spacing 400, 600 and 800.



Fig. 6. Interface position when the dendrite tips are close to the domain boundary. Solid line: computed interface position using single
signed distance function with markers. Dash dot line: computed interface position using multiple signed distance functions.
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significantly much more efficient than using multiple signed distance functions, since only one level set equa-
tion needs to be solved. In all the other computations in this work, one signed distance function with markers
will be used.

4.1.3. Convergence study

In the previous computations of studying crystal spacing effects, we have used an adaptive mesh (initial
coarse mesh 75 · 75, refinement level 5) equivalent to a uniform mesh of grid spacing 1. However, in
[13,20], a grid spacing of 0.4 was used for a similar problem with just one crystal. In order to demonstrate that
grid spacing 1 already leads to a converged solution, we also computed the numerical solution for crystal spac-
ing 600 using various grid spacings 1, 2, 4, 8, 16, 32 (corresponding to refinement levels 5, 4, 3, 2, 1 and 0), as
demonstrated in Fig. 7. Notice that in the studies here, adaptive meshing is used. Thus the grid spacing actu-
ally refers to the smallest grid spacing of the adaptive mesh. To use roughly the same time discretization, the
CFL coefficient for adaptive time stepping is selected to be 1

3
; 1

6
; 1

12
; 1

24
; 1

48
; 1

96
corresponding to the selection of

grid spacings 1, 2, 4, 8, 16, 32, respectively. As the grid spacing decreases, the computed dendrites become
slimmer. To quantitatively study convergence, we define the error as the root mean square (rms) of the differ-
ence in the temperature and the ‘‘true’’ temperature (obtained with refinement level 5) at time 1.05 · 104 on

nodes of a 75 · 75 uniform mesh, i.e. err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

T i�T true
i

0:55

� �2
r

. Here n is the total number of nodes of the uni-

form mesh with value 76 · 76 = 5776, Ti is the temperature at node i at time 1.05 · 104, and T true
i is the ‘‘true’’

temperature at node i at time 1.05 · 104. The relation between error and refinement level of the adaptive mesh
is given in Fig. 8. The computed dendrites with grid spacing 32 are significantly different (much ‘fatter’) than
the converged solution with the finest grid spacing. In fact, since grid spacing 32 is even larger than the initial
crystal radius, it is expected that dendrites computed with grid spacing 32 are much ‘fatter’ than the converged
solution. However, the solution with grid spacing 16 can still give us an insight on the interaction between the
dendrites. The fact that grid spacing can be 40 times larger than the grid spacing used in the literature [13,20]
(16 = 40 · 0.4) and still able to provide reasonable solution suggests that the present technique has significant
potential for the study of the interaction between many dendrites. Notice that grid spacing 40 times larger
means that the element size is 402 times larger and the number of elements just 1

402 times the original required

number of elements. This would lead to a significant reduction of computational requirement in terms of
memory and time. In 3D, this advantage will be even more obvious, since the number of elements can be



Fig. 7. Interaction between nine crystals with spacing 600 using various grid spacings 1, 2, 4, 8, 16 and 32.
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Fig. 8. Error at refinement levels 0–5 (corresponding to grid spacings 32, 16, 8, 4, 2 and 1).
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reduced to 1
403 of the required number of elements using grid spacing 0.4. We will demonstrate the interaction

of multiple 3D dendrites in Section 4.2.3.
The main reasons that the present method converges nicely are (1) that the interface is tracked with a level

set which could give accurate normal direction and interface curvature for accurate determination of the equi-
librium temperature using the Gibbs–Thomson relation, and (2) that energy is numerically conserved since no
essential boundary condition is applied on the interface, which could compensate for the numerical error in
the interface velocity evaluation.

4.2. Columnar-to-equiaxed transition (CET)

Columnar to equiaxed transition is a phenomenon of great importance in casting. For decades, researchers
have relied on the cellular automata method [1,2,25,34] to give numerical estimation of the microstructure type
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(columnar or equiaxed) at different solidification speeds and thermal gradients. Arguing that cellular automata
method has issues of mesh dependence and lack of demonstration for its convergence, Ref. [26] provides the
first CET study using the phase field method. In this section, we will first study the same numerical example as
in [26] as a validation of our numerical method. We will compare our numerical results of columnar-to-equi-
axed transition (CET) with an analytical estimation and numerical results using a phase field method in [26].
Independence of the results on the numerical grid size is not demonstrated in the phase field study of [26].

Here we will first perform a convergence study for one typical case to determine the appropriate grid spac-
ing for numerical simulation (Section 4.2.1). The investigation of CET for different process conditions is then
reported in Section 4.2.2. Since crystal growth in real world is three-dimensional growth, we will consider the
interaction between multiple crystals in 3D (Section 4.2.3). We will also incorporate many more crystals by
using a much larger computational domain to study how the randomness of seed orientation affects the micro-
structure pattern (Section 4.2.4).

4.2.1. Convergence study

The important material properties considered are taken from [26] and are given as follows: initial concen-
tration C0 = 3 wt.%, partition coefficient kp = 0.14, liquidus slope ml = � 2.6 K/wt.%, solute diffusion coeffi-
cient D = 3000 lm2 s, melting temperature Tm = 933.47 K, required undercooling for nucleation DTn = 8 K,
Gibbs–Thomson relation coefficient �c = 0.24 K lm, surface tension anisotropy � = 0.01 and domain height
3
ffiffiffi
2
p

ds with ds = 9.7 lm. The spacing between two potential nucleation sites is
ffiffiffi
2
p
� ds, so that the density

of potential nucleation sites is d�2
s with a body centered structure as shown in Fig. 9. In [26], 23 cases with

various solidification speeds and thermal gradients are considered using a mesh with 151 grid points in the
y-direction by fully-exploiting symmetry. The uniform mesh used in [26] is approximately equivalent to the
adaptive mesh used in this work with refinement level 10 and with an initial coarse mesh 20 · 1.

In our computation, we use a coarser adaptive mesh with refinement level 9 (smallest grid spacing is
0.08 lm). In order to demonstrate that refinement level 9 is actually fine enough for this problem, we per-
formed a convergence study using refinement levels 5–10 (discretization in space) for solidification speed
3000 lm/s and thermal gradient 1400 K/cm. For time discretization, the CFL coefficient used for adaptive
time stepping is 1/3 for all computations in this example. To investigate the convergence quantitatively, we
defined the error as the root mean square of the difference in the concentration and the ‘‘true’’ concentration
(concentration obtained using refinement level 10) at time 3.47 · 10�2 s on nodes of a 640 · 32 uniform mesh,

i.e. err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

Ci�Ctrue
i

3:0

� �2
r

. As shown in Fig. 10, the nucleation pattern for refinement level 5 is significantly
Fig. 9. Schematic of the computational domain and potential nucleation sites for the two-dimensional crystal growth.

Fig. 10. Solute concentration for solidification speed 3000 lm/s and thermal gradient 1400 K/cm using adaptive meshing with refinement
levels from 5 to 10 (first row: refinement level 5, 6, 7; second row: refinement level 8, 9, 10).
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Fig. 11. Error at refinement level from 5 to 10 for solidification speed 3000 lm/s and thermal gradient 1400 K/cm.
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different from the results obtained with refinement level 10, which leads to a very large error (around 0.84 as
shown in Fig. 11). When the refinement level is increased to 7–9, the crystal shapes are visually very similar to
the crystal shape obtained with refinement level 10. Since the error when using refinement level 9 is only about
0.04, we can assume that refinement level 9 is fine enough. For all two-dimensional computations in this prob-
lem, we use refinement level 9.

4.2.2. Investigation of CET

Here we perform the same 23 cases examined in [26] with solidification speeds and thermal gradients listed
in Table 1. The computed results for the 23 cases are shown in Fig. 12. The growth types of the 23 cases
(columnar, equiaxed and mixed) are plotted in Fig. 13 together with the analytical estimation of CET using

Hunt’s model [35] with G ¼ 0:666
ffiffiffiffiffi
qn
p

DT t 1� DT n

DT t

� �3
� �

and DTt = 216V1/2 [26], where G and V are the thermal

gradient and pulling velocity for directional growth, respectively, DTn is the required undercooling for nucle-
ation and DTt is the undercooling at the dendrite tip. In the model discussed in [26], only one phase field equa-
tion and one solute diffusion equation are solved. The temperature is not solved from the governing heat
equation. Here, we take the same simplification. Initially the temperature is distributed linearly with a given
thermal gradient G. The evolution of the temperature is then computed with a constant cooling rate, R, which
is obtained from the given pulling velocity and thermal gradient through R = V · G. Just as predicted by
Hunt’s model, the columnar growth is favored for low pulling velocity (solidification speed) and high temper-
ature gradient, while the equiaxed growth is favored for high pulling velocity and low temperature gradient.
Mixed growth (a transition microstructure from columnar to equiaxed) is observed for cases below but close
to the analytical estimation. Notice that in these computational example, the temperature gradient considered
are unrealistically large in order to observe and study the CET transition.
Table 1
Considered solidification speed (lm/s) and thermal gradient (K/cm)

# 1 2 3 4 5 6 7 8 9 10 11 12

V 3000 3000 3000 3000 3000 3000 3000 3000 6000 6000 6000 6000
G 140 1400 2800 5600 7000 8400 9800 21,000 7000 9800 21,000 39,200

# 13 14 15 16 17 18 19 20 21 22 23

V 10,000 10,000 10,000 10,000 10,000 1000 1500 1500 2500 3500 4500
G 7000 15,400 21,000 39,200 56,000 140 140 7000 7000 7000 7000



Fig. 12. Computation results showing solute concentration for the 23 cases listed in Table 1 (first row: case 1–4; second row: 5–8 and so
on). Gibbs–Thomson coefficient �c = 0.24 K lm.

Fig. 13. CET map for directional solidification for the 23 cases listed in Table 1. Gibbs–Thomson coefficient �c = 0.24 K lm.
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Comparing with the results in [26], we obtain similar growth pattern. However, we did not observe second-
ary dendrite formation. Even with the finest mesh in the convergence study as shown in Fig. 10, secondary
dendrites do not show up in the numerical solution. Since convergence of the numerical solution is observed
in Fig. 10, we believe that the specified material properties will not lead to significant secondary dendrites
using our mathematical model. In order to demonstrate the ability to capture secondary dendrites using
the present level set method, we reduce the magnitude of Gibbs–Thomson relation coefficient �c from
0.24 K lm to 0.01 K lm with corresponding results shown in Fig. 14. The growth type of the 23 cases (colum-
nar, equiaxed and mixed) are plotted in Fig. 15 together with the analytical estimation using Hunt’s model.
A comparison for case 2 is given in Fig. 16 to demonstrate the effects of �c on the formation of secondary den-
drites. Comparing with the results shown in Figs. 12 and 13 with larger magnitude of the Gibbs–Thomson
relation coefficient �c, we observe that the CET transition occurs at a smaller thermal gradient for a giving
solidification speed.

Without utilizing symmetry to reduce the computation requirement as was the case in [26], we observe a
continuous transition from equiaxed growth to columnar growth as shown in case 8 in Fig. 12, and cases 4
and 12 in Fig. 14. If symmetry is utilized, the computation requirement is much less (only 1/6) than that with-
out using symmetry. However, if the solution symmetry is inherently different from the applied symmetry, we
may obtain very different results as shown in Fig. 17. For example, the computation domain width may not be
an integer times of the dendritic growth wavelength, which is related with processing and material parameters

as analytically estimated using k ¼ 2p DC
�VmlC0

� �1=2

[36]. As shown in the right of Fig. 17, the domain boundary

restricts the dendrites from adjusting their wavelength to an optimal value. This leads to dendrite tips with
slightly different shapes. However, if a larger domain is used, the dendrites can gradually adjust their wave-
length leading to dendritic tips with the same shape. More importantly, the wavelength of dendritic growth
is significantly smaller than the wavelength obtained without utilization of symmetry. Therefore, for more
accurate solution, a larger computational domain is preferred as it can reduce the effects of the artificial com-
putational domain boundary on the numerical solution. However, the computation time will also increase sig-
nificantly with an enlarged domain. For example, the results obtained using symmetry shown in the right of
Fig. 17 take around 45 min using one computation node with two 3.8 G CPUs, while the results obtained
without using symmetry shown in the left of Fig. 17 take around 4.5 h with the same computation node.
Selecting appropriate computational domain size is indeed an issue of balancing between the numerical solu-
tion accuracy and the required computational effort.
Fig. 14. Computation results showing solute concentration for the 23 cases listed in Table 1 (first row: case 1–4; second row: 5–8 and so
on). Gibbs–Thomson coefficient �c = 0.01 K lm.



Fig. 15. CET map for directional solidification for the 23 cases listed in Table 1. Gibbs–Thomson coefficient �c = 0.01 K lm.

Fig. 16. Computation results showing solute concentration for case 2 with �c = 0.24 K lm (left) and �c = 0.01 K lm (right).

Fig. 17. Computed growth pattern showing solute concentration without using symmetry (left) and with symmetry (right) for the case 8
listed in Table 1. The box with dashed line shown in the right figure is the computation domain when using symmetry.
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4.2.3. Multiple three-dimensional crystal interaction

As we know, crystal growth is inherently three-dimensional. Here, we perform a 3D study of the interaction
between multiple crystals. Material properties are selected to be the same as in the 2D study with Gibbs–
Thomson coefficient �c = 0.24 K lm. However, the spacing between two potential nucleation sites is taken
as

ffiffiffi
23
p
� ds, so that the density of potential nucleation sites is d�3

s with a body centered structure as shown
in Fig. 18. As computation in 3D is more intensive than in 2D, we fully-utilize symmetry. Grid spacing is
selected as 0.05 lm (grid spacing 0.08 lm was used for the 2D example). For solidification speed 3000 lm/s
and thermal gradient 1400 K/cm, we obtain the 3D crystal shape as shown in Fig. 19. The solute concentration
at cross sections x = 0 and x = z is shown in Fig. 20. In comparison to the two-dimensional computation



1400 K/cm.
(Fig. 7), the required undercooling for nucleation 8 K is never obtained. Therefore, nucleation is not observed.
In three-dimensions, the solute rejected from the dendrite tips can diffuse away in various directions around
the dendrite tip. So the dendrite tip velocity may be able to ‘catch up’ with the pulling velocity for a given
thermal gradient, since the rejected solute is easier to diffuse away comparing with the two-dimensional situ-
ation and increase the equilibrium temperature on the interface. Therefore, the maximum undercooling in
front of the dendrite tips is not increasing as the dendrites grow, while in the two-dimensional growth, the
diffusion of solute rejected from dendrite tips is confined to either left of right direction of the dendrite tip.
Therefore, the dendrite tip velocity may not be as large as the pulling velocity if the thermal gradient is not

l

m/s and thermal gradient
L. Tan, N. Zabaras /Journal of Computational Physics 226 (2007) 131–155

149



Fig. 20. Solute concentration at cross sections x = 0 (left) and x = z (right) for 3D crystal growth with solidification speed 3000 lm/s and
thermal gradient 1400 K/cm.

150 L. Tan, N. Zabaras / Journal of Computational Physics 226 (2007) 131–155
sufficiently large. This further leads to increasing the maximum undercooling in front of the dendrite tips until
nucleation occurs as the maximum undercooling is more than DTn.

In order to observe nucleation phenomena in three-dimensions, we reduced the required undercooling for
nucleation from 8 K to 7 K with results shown in Figs. 21 and 22. As shown in the cross section x = z

(Fig. 22), the pattern of solute concentration has a similarity with the results obtained in two-dimensions.
However, the pattern of solute concentration in the cross section x = 0 is quite different from the two-dimen-
sional results. Similarly to the 2D computation, if the thermal gradient is increased from 1400 K/cm to
21,000 K/cm, the growth pattern will convert to columnar growth as shown in Figs. 23 and 24. The three-
Fig. 21. Three-dimensional crystal growth with required undercooling for nucleation 7 K (solidification speed 3000 lm/s and thermal
gradient 1400 K/cm). The right figure is the same plot as the left figure without plotting the nucleated crystal in the dendrite front.

Fig. 22. Solute concentration at cross sections x = 0 (left) and x = z (right) for 3D crystal growth with required undercooling for
nucleation 7 K (solidification speed 3000 lm/s and thermal gradient 1400 K/cm).



Fig. 23. Three-dimensional crystal growth with solidification speed 3000 lm/s and thermal gradient 21,000 K/cm.

Fig. 24. Solute concentration at cross sections x = 0 (left) and x = z (right) for 3D crystal growth with solidification speed 3000 lm/s and
thermal gradient 21,000 K/cm.
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dimensional computation in these two cases shows that the two-dimensional computational results can serve
as a tool to qualitatively but not quantitatively understand realistic 3D crystal growth.

4.2.4. Effects of randomness on crystal orientation

In the above computation, we have assumed that all crystals have the same orientation to allow us to com-
pare with the results in [26]. However, from the first numerical example studying interaction between nine
crystals, we have found that crystal orientation plays an important role during multiple crystal growth. Here
we incorporate the effects of randomness in crystal orientation (uniformly distributed from 0 to 2p) for cases 2
and 6 of Table 1. The Gibbs–Thomson relation coefficient is selected to be 0.01 K lm as in the computation of
the 23 cases with reduced Gibbs–Thomson relation coefficient. All other parameters are selected to be the
same. Due to the randomness in crystal orientation, symmetry is broken and more dendrites have to be
included in the numerical solution to obtain the growth pattern. Therefore, we increased the domain height
from 3

ffiffiffi
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ds to 9
ffiffiffi
2
p

ds.



Fig. 25. Computed growth pattern for cases 2 (left) and 6 (right) with consideration of randomness in crystal orientation. The colors used
show crystal orientations.
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Computation results of cases 2 and 6 are shown in Fig. 25. In comparing with the results shown in Fig. 14
we conclude that randomness in crystal orientation has a great effect on the interaction between crystals. If the
nucleated crystal orientation is ‘lucky’ to be almost the same as the growth direction, then the crystal may
grow very long before its growth is blocked by other crystals. In general, crystals with orientation close to
the growth direction are favored in growth. The slight difference in orientation angle between nearby dendrites
may lead to increasing gap, which gives room for nucleation of new dendrites, or decreasing gaps, which will
eventually block the growth of one dendrite. This phenomenon is observed in Fig. 26 at two different time
levels.

4.3. Interaction between crystals with consideration of randomness in required undercooling for nucleation

In the previous example, we considered the effects of randomness in crystal orientation, while the required
undercooling for nucleation was assumed to be constant (8 K). With this assumption, a potential nucleation
site will never nucleate if the actual undercooling is less than 8 K. A consequence of this is that there is little
variety of microstructure size even though the processing parameters, such as velocity and thermal gradient
are significantly different. For example, at very low thermal gradient, we obtain slim equiaxed microstructure
as shown in the results of case 1 in the previous example. However in practice, such slim equiaxed microstruc-
ture is not common. Instead, coarse equiaxed microstructure is often observed, which is known as the colum-
nar-to-equiaxed transition and usually appears in the center of castings.

In the previous example, the temperature field was not solved. A cooling rate R = V · G was directly
applied. This assumption also limits the application to directional growth where a temperature gradient
can be controlled. In many other processes e.g. sand casting, the temperature (or heat flux) is only controlled
at the domain boundary instead of the whole domain. To give results with more practical importance, here we
perform a numerical study without these assumptions by using random undercooling for nucleation and by
solving the heat equation. The following dimensionless material properties are considered: potential nucle-
ation site density qn = 100, required undercooling for nucleation DTn is random with distribution
N(1.5,0.22), density q = 1, heat capacity c = 1, heat diffusion coefficient k = 1, latent heat L = 100, Lewis num-
ber Le = 100, melting temperature Tm = 0, initial concentration C0 = 0.1, liquidus slope ml = �10, partition
coefficient kp = 0.1, Gibbs–Thomson relation with kinetic undercooling T � ¼ T m þ mlC

l�
2
3
ð1� cosð4ðh� IÞÞÞV . A computation domain with size 10 · 2.5 is used. Initially, the whole domain is liquid.
Fig. 26. Computed growth pattern for case 6 with consideration of randomness in crystal orientation at time step 6000 and 8000. The
colors used show crystal orientations.



Fig. 27. Computed growth pattern on a domain of 10 · 2.5 at various conditions. Left: grid spacing 0.0098; Right grid spacing 0.0049.
First row: V = 0.1, Gl = 0.01; Second row: V = 0.35, Gl = 0.01; Third row: V = 0.137, Gl = 30.0. The colors used show crystal
orientations.
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The temperature in the whole domain is distributed with thermal gradient G ¼ Gl exp �Vx
a

� 	
with left side tem-

perature at Tm + mlC
0. At the left boundary, a heat flux is withdrawn from the domain with magnitude

qs ¼ kGs exp �V ð0�VtÞ
a

h i
, while at the right boundary, a heat flux enters the domain with magnitude

ql ¼ kGl exp �V ð10�VtÞ
a

h i
. Here, a � k

qc ¼ 1 and V ¼ kðGs�GlÞ
qL . The reason to select such initial and boundary con-

ditions is that it leads to uniform microstructure throughout the computational domain. Adaptive mesh with
smallest grid spacing 0.0098 is used to obtain crystal pattern as shown in the left of Fig. 27. A computation
domain of 10 · 2.5 is used here. Three combinations of V and Gl ((V,Gl) = (0.1,0.01), (0.35,0.01), (0.137, 30.0))
are studied with results shown in Fig. 27.

At low solidification speed and low thermal gradient (V = 0.1, Gl = 0.01), we observe coarse equiaxed crys-
tal growth, which is not captured in the previous example. By reducing the grid spacing by a half to 0.0049, we
obtain different microstructures as shown in the left and right of Fig. 27. Due to randomness in crystal orien-
tation angle and in required undercooling for nucleation, numerical noise may lead to very different micro-
structure details. However, the obtained microstructures with both grids are very similar in their patterns.
This suggests that our model can be used to simulate microstructure evolution and predict microstructure pat-
terns, even though there is always error in the numerical solution. The capability of investigating the interac-
tion between tens of crystals with demonstration of convergence is an improvement in numerical study of
crystal growth. However, hundreds or thousands of crystals are often involved in reality even for a small piece
of casting. Based on the previous convergence study for interaction between a small number of crystals, we
here demonstrate the ability of the current approach to capture interaction between hundreds of crystals
by using the same material and a larger computational domain of size 80 · 80 (the left-top quarter is not
included). The relation of the computational domain and actual domain is demonstrated in Fig. 28. Initially,
the whole domain is at temperature 30. A cooling rate of 5 is applied at all computational domain boundaries
160

80

Cooling rate 5 on all boundary sides Cooling rate 5 

q=0

Fig. 28. Schematic of the actual domain (left) and computational domain (right).



Fig. 29. Microstructure pattern for growth of hundreds of crystals in a two-dimensional domain. The colors used show crystal
orientations.
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except on the right side, where the heat flux is 0. Using the same grid spacing 0.0098 and a fixed time step of
7 · 10�3, we obtain the microstructure at time 45 shown in Fig. 29. At the corner, equiaxed microstructure is
obtained, while at places far away from the corner, a mixture of columnar growth and equiaxed growth is
obtained. At the center of the domain, columnar growth dominates. Since hundreds of crystals are involved
as shown in Fig. 29 the computation of this problem is very intensive. It takes around 24 h using 16 nodes each
with two 3.8 G CPUs to obtain the results in Fig. 29.

5. Conclusions

Our previous numerical work based on the level set method [22], which combines features of both front-
tracking methods and fixed domain methods, was extended in this work to study interaction between multi-
ple dendrites during solidification. By using markers to identify different crystals, we are able to study the
interaction between multiple dendrites with a single signed distance function. Accuracy of our approach
is demonstrated with convergence studies and comparison with the multi-level set method. Simulations of
columnar to equiaxed transition are performed and compared with recent phase field results available in
the literature [26]. New abilities provided by the current numerical approach include extension to three-
dimensions and arbitrary crystallographic orientations. We find that the three-dimensional growth is signif-
icantly different from the two-dimensional growth for one of the two cases considered. However, at other
considered cases with high thermal gradient, the microstructure patterns obtained with two- and three-
dimensional modeling are both columnar growth. Randomness in crystallographic orientations was found
to have a significant effect on the results. Efficiency of the multi-level set algorithm is demonstrated in an
example that includes hundreds of crystals with consideration of randomness effects in both crystallographic
orientation and required undercooling for nucleation. The algorithms developed here are currently being
used as localized subgrid models for the development of efficient multiscale models of solidification
processes.
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